目前的人工智能是弱人工智能
我们将人工智能分为弱人工智能、强人工智能和终极人工智能三个阶段。
不同阶段所需要的复杂度是指数级递增的。弱人工智能指的是专注在某一特定类别任务的人工智能,如人脸识别算法专注人脸识别,Siri 只能完成特定功能的语音交互,AlphaGo 十分强大但是专注于围棋领域;强人工智能,或通用人工智能,指的是泛用型人工智能,一般拥有自主的意识,可以通过图灵测试;终极人工智能指的是在各方面均能超越其造物主的人工智能,如 EA《质量效应》中的 Geth 种族,在质疑自己的存在意义并觉醒后,其战胜了自己的造物主 Quarians。
显而易见,当前绝大部分人工智能公司的产品均只能在某一特定类别任务试用,是弱人工智能。强人工智能仍处于孕育期,尚未有足够坚实的理论支撑,也未出现经过检验的原型。至于终极人工智能则更加长远,估计本世纪不会出现。
图:人工智能的三个阶段
硬件支撑、数据集、算法、应用场景是人工智能的四大要素
根据研究,我们将目前的弱人工智能领域归集为下面这个模型。
硬件支撑是整个人工智能的基础。数据的搜集需要传感器,数据的储存需要存储介质,算法的训练需要高效的芯片,应用场景则需要相应的硬件配合(如手机、机器人等)。
数据集是训练算法的基础。俗话说“巧妇难为无米之炊”,在机器学习当道的情况下,拥有良好标记的大数据集方能训练出优秀的算法。
算法源自数据集,优秀的算法可以应用于相应的应用场景进行变现,如人脸识别可以应用于安全领域,语音识别可以应用于翻译领域等。
应用场景可以产生大量的业务数据,这些数据大多经过了用户的标识,可以补充进数据集中,从而更好地训练出更优秀的算法。更优秀的算法会促进更大规模的应用,这样就形成了一个正反馈的循环。
因而,我们认为,人工智能领域,在无破坏性技术的出现的情况下,先发公司优势较大。
图:人工智能行业模型
不断下探的存储成本和计算成本推动人工智能的发展
目前,存储成本已从 1980 年的 437,500 美元/GB 下跌到 2016 年的 0.019 美元/GB,CAGR 在-38%左右。较低的存储成本可以使得大数据的存储更为便宜。
而用$/GFLOPS(1GFLOPS=109F LOPS,FLPOS=Floating Point Operations Per Second,每秒十亿次浮点运算价格)衡量的计算成本也一路下探,根据Wikipedia 的数据,$/GFLOPS CAGR 在-37%左右。2017 年 6 月,AMD Ryzen 结合 AMD VEGA Frontier Edition 将$/GFLOPS 降到 0.06 美元。
图:不断下降的存储成本
图:不断下降的计算成本
不同的研究者对人脑的计算能力给出了差异巨大的估计。
本文采用 Moravec 2009 年在《科学美国人》发表的文章中的数据:人脑的计算能力约等于 100million MIPS(Million Instructions Per Second,每秒百万指令)。然而,MIPS并不可以直接与 FLOPS 进行比较。
根据经验,MFLOPS = 2.3 x MIPS0.89,因此,人脑的计算能力约等于 3*1013FLOPS。也就是说,若把人脑视作一个处理器,其目前的价格为 3*10^13/10^9*0.06=1800 美元。
需要注意的是,这仅仅是计算能力,而不包括存储能力。考虑到人脑也是一个存储器,其存储成本也应该计算在内。
尽管人脑有长期记忆和短期记忆的区别,两种记忆唤起的时间也有较大差异,为了简化,我们将其共同视作长期记忆。根据 Paul Reber 2010 年在《科学美国人》发表的文章中的数据:人脑的存储空间大约在 2.5 Petabytes(1PB = 1 million GB),因此,若把人脑视作一个存储器,其目前的价格为 2.5*10^6*0.019=47,500 美元。
两者相加,目前人脑相当于一台 49,300 美元的计算机。
2030 年代模拟人脑的计算机单价将低于 1000 美元
当前超级计算机的计算能力和存储空间已经可以与人脑比拼。
根据国家超级计算无锡中心提供的数据“,神威〃太湖之光”持续运算性能达到 93.015PFLOPS,在线存储空间 10PB,带宽 288GB/S,其算力和存储量指标已超越人脑若干数量级。但超级计算机毕竟是稀缺的,因此,本文更关注与商用成本方面。
基于上文的数据,假设存储成本-38% yoy,计算成本-37% yoy,当整机价格低于 1000 美元时进入大规模应用状态,那么,通过解一个很简单的方程,我们可以得出,仅仅 8年后(2026 年),模拟人脑的计算机单价会低于 1000 美元,从而与人脑可以匹敌的人工智能可以进入大规模应用状态!奇点比我们想象的要近很多!当然,这只是一个粗略的估算,但比较稳健的估计,2030 年代,我们将迎来人工智能奇点。
图:2026 年可以模拟人脑的计算机单价将低于 1000 美元
中国报告网发布的报告书内容严谨、数据翔实,更辅以大量直观的图表帮助本行业企业准确把握行业发展动向、市场前景、正确制定企业竞争战略和投资策略。本报告依据国家统计局、海关总署和国家信息中心等渠道发布的权威数据,以及我中心对本行业的实地调研,结合了行业所处的环境,从理论到实践、从宏观到微观等多个角度进行市场调研分析。它是业内企业、相关投资公司及政府部门准确把握行业发展趋势,洞悉行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。本报告是全面了解行业以及对本行业进行投资不可或缺的重要工具。
本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
【报告目录】
第一章 人工智能的基本介绍
1.1 人工智能的基本概述
1.1.1 人工智能的内涵
1.1.2 人工智能的分类
1.1.3 人工智能关键环节
1.1.4 人工智能研究阶段
1.1.5 人工智能的产业链
1.2 人工智能发展历程
1.2.1 发展简史
1.2.2 研究历程
1.2.3 发展阶段
1.3 人工智能的研究方法
1.3.1 大脑模拟
1.3.2 符号处理
1.3.3 子符号法
1.3.4 统计学法
1.3.5 集成方法
第二章 国际人工智能行业发展分析
2.1 全球人工智能行业发展综况
2.1.1 人工智能概念的悄然兴起
2.1.2 驱动人工智能的内外动因
2.1.3 人工智能的发展阶段分析
2.1.4 全球人工智能产业发展状况
2.1.5 发达国家重视人工智能产业
2.1.6 世界人工智能迎来发展新阶段
2.2 美国
2.2.1 人工智能成美国发展战略
2.2.2 人工智能应用于美国国防
2.2.3 美国量子技术助力AI发展
2.2.4 美国机器人市场需求预测
2.3 日本
2.3.1 AI成日本工业发展重点
2.3.2 日本政府推进人工智能
2.3.3 日本重视人工智能研究
2.3.4 日本人工智能投资计划
2.3.5 日本科技发展借力人工智能
2.4 各国人工智能产业发展动态
2.4.1 欧盟推进服务机器人研发
2.4.2 欧美推出大脑发展计划
2.4.3 俄国成功开发AI系统
2.4.4 韩国人工智能研发动态
2.4.5 AI应用于巴西世界杯
2.5 国际企业加快布局人工智能领域
2.5.1 互联网企业加快AI产业布局
2.5.2 Facebook建设AI硬件平台
2.5.3 戴尔开展人工智能研发合作
2.5.4 雅虎迈出人工智能发展步伐
2.5.5 维基百科涉足人工智能领域
第三章 中国人工智能行业政策环境分析
3.1 政策助力人工智能发展
3.1.1 政策加码布局人工智能
3.1.2 人工智能将纳入“十三五”
3.1.3 中国大脑研究计划开启
3.1.4 人工智能成为国家战略重点
3.2 人工智能行业相关政策分析
3.2.1 “中国制造”助力人工智能
3.2.2 “互联网+”推动人工智能
3.3 人工智能行业地方政策环境分析
3.3.1 AI或纳入北京“十三五”
3.3.2 上海市推出AI“脑计划”
3.3.3 人工智能获广州财政支持
3.3.4 深圳市具备AI发展优势
3.4 机器人行业政策规划分析
3.4.1 政策大力支持机器人行业
3.4.2 工业机器人将持续高增长
3.4.3 服务机器人将成为新蓝海
第四章 中国人工智能行业发展分析
4.1 人工智能行业发展综况
4.1.1 人工智能技术方兴未艾
4.1.2 国内人工智能布局加快
4.1.3 人工智能实验室成立
4.1.4 人工智能行业发展迅猛
4.1.5 人工智能市场需求将增长
4.1.6 人工智能市场进入新阶段
4.2 人工智能产业生态格局分析
4.2.1 生态格局基本架构
4.2.2 基础资源支持层
4.2.3 技术实现路径层
4.2.4 应用实现路径层
4.2.5 未来生态格局展望
4.3 人工智能区域发展动态分析
4.3.1 哈尔滨逐步完善机器人产业
4.3.2 安徽省建立人工智能学会
4.3.3 四川成立人工智能实验室
4.3.4 上海进一步推进人工智能
4.3.5 福建建立仿脑智能实验室
4.4 人工智能技术研究动态分析
4.4.1 人工智能再获重大突破
4.4.2 智能语音识别及控制技术
4.4.3 高级人工智能逐步突破
4.4.4 AI神经网络识别技术
4.4.5 人工智能带来媒体变革
4.5 人工智能行业发展存在的主要问题
4.5.1 人工智能发展面临的困境
4.5.2 人工智能发展的隐性问题
4.5.3 人工智能发展的道德问题
4.5.4 人工智能发展的技术障碍
4.6 人工智能行业发展对策及建议
4.6.1 人工智能的发展策略分析
4.6.2 人工智能的技术发展建议
4.6.3 人工智能伦理问题的对策
第五章 人工智能行业发展驱动要素分析
5.1 硬件基础日益成熟
5.1.1 高性能CPU
5.1.2 “人脑”芯片
5.1.3 量子计算机
5.1.4 仿生计算机
5.2 大规模并行运算的实现
5.2.1 云计算的关键技术
5.2.2 云计算的应用模式
5.2.3 我国推进云计算发展
5.2.4 云计算技术发展动态
5.2.5 云计算成人工智能基础
5.3 大数据技术的崛起
5.3.1 大数据技术的内涵
5.3.2 大数据的各个环节
5.3.3 大数据的主要应用领域
5.3.4 大数据成人工智能数据源
5.3.5 大数据技术助力人工智能
5.4 深度学习技术的出现
5.4.1 机器学习的阶段
5.4.2 深度学习技术内涵
5.4.3 深度学习算法技术
5.4.4 深度学习的技术应用
5.4.5 深度学习提高人工智能水平
第六章 人工智能行业的技术基础分析
6.1 自然语言处理
6.1.1 自然语言处理内涵
6.1.2 语音识别技术分析
6.1.3 语义技术研发状况
6.1.4 自动翻译技术内涵
6.2 计算机视觉
6.2.1 计算机视觉的内涵
6.2.2 计算机视觉的应用
6.2.3 计算机视觉的运作
6.2.4 人脸识别技术应用
6.3 模式识别技术
6.3.1 模式识别技术内涵
6.3.2 文字识别技术应用
6.3.3 指掌纹识别技术应用
6.3.4 模式识别发展潜力
6.4 知识表示
6.4.1 知识表示的内涵
6.4.2 知识表示的方法
6.4.3 知识表示的进展
6.5 其他技术基础
6.5.1 自动推理技术
6.5.2 环境感知技术
6.5.3 自动规划技术
6.5.4 专家系统技术
第七章 人工智能技术的主要应用领域分析
7.1 工业领域
7.1.1 智能工厂进一步转型
7.1.2 人工智能的工业应用
7.1.3 人工智能应用于制造领域
7.1.4 人工智能助力中国制造
7.1.5 人工智能成工业发展方向
7.1.6 AI工业应用的前景广阔
7.2 医疗领域
7.2.1 人工智能的医疗应用概况
7.2.2 人工智能在中医学中的应用
7.2.3 人工神经网络技术的医学应用
7.2.4 AI在医学影像诊断中的应用
7.2.5 AI在医疗诊断应用中的展望
7.2.6 企业加快布局医疗人工智能
7.3 社交领域
7.3.1 人工智能的移动社交应用
7.3.2 人工智能社交产品发布
7.3.3 社交网络成AI应用焦点
7.4 无人驾驶领域
7.4.1 无人驾驶的效益分析
7.4.2 自动驾驶技术发展进程
7.4.3 无人驾驶产业发展加快
7.4.4 人工智能助力无人驾驶
7.4.5 AI成为智能汽车发展方向
7.5 其他领域
7.5.1 人工智能的智能搜索应用
7.5.2 人工智能应用于电子商务
7.5.3 人工智能与可穿戴设备结合
7.5.4 人工智能成3D打印基础
7.5.5 人工智能的“虚拟助手”
7.5.6 人工智能家居成为新趋势
第八章 人工智能机器人发展分析
8.1 机器人产业发展综况
8.1.1 全球机器人行业规模分析
8.1.2 中国工业机器人市场现状
8.1.3 机器人行业产业链构成
8.1.4 机器人的替代优势明显
8.1.5 机器人下游应用产业多
8.1.6 智能机器人成为发展趋势
8.2 人工智能在机器人行业的应用状况
8.2.1 人工智能与机器人的关系
8.2.2 AI于机器人的应用过程
8.2.3 AI大量运用于小型机器人
8.2.4 AI机器人的重要应用领域
8.3 人工智能在智能机器人领域的技术应用
8.3.1 专家系统的应用
8.3.2 模式识别的应用
8.3.3 机器视觉的应用
8.3.4 机器学习的应用
8.3.5 分布式AI的应用
8.3.6 进化算法的应用
8.4 机器人重点应用领域分析
8.4.1 医疗机器人
8.4.2 军事机器人
8.4.3 教育机器人
8.4.4 家用机器人
8.4.5 物流机器人
8.4.6 协作型机器人
第九章 国际人工智能行业重点企业分析
9.1 微软公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
9.2 IBM公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
9.3 谷歌公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
9.4 亚马逊公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
第十章 中国人工智能行业重点企业分析
10.1 百度公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
10.2 腾讯公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
10.3 阿里集团
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
10.4 科大讯飞股份有限公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
10.5 北京捷通华声语音技术有限公司
(1)企业概况
(2)主营业务情况分析
(3)公司运营情况分析
(4)公司优劣势分析
第十一章 人工智能行业投资状况分析
11.1 人工智能行业投资综况
11.1.1 全球人工智能的投融资分析
11.1.2 国内人工智能的投融资状况
11.1.3 人工智能行业投资总量分析
11.1.4 人工智能行业投资进程加快
11.1.5 AI认知技术商业投资加快
11.2 人工智能行业投资动态
11.2.1 AnkiDrive获得新一轮投资
11.2.2 Vicarious公司开启AI融资
11.2.3 特斯拉注资建人工智能公司
11.2.4 Demiurge公司注资人工智能
11.2.5 格灵深瞳公司获得天使投资
11.3 人工智能行业迎来投资机遇
11.3.1 人工智能成为投资风口
11.3.2 人工智能进入黄金时期
11.3.3 人工智能迎来投资机遇
11.3.4 全球人工智能投资升温
第十二章 人工智能行业发展前景及趋势预测
12.1 人工智能行业发展前景展望
12.1.1 人工智能发展前景展望
12.1.2 人工智能的市场空间巨大
12.1.3 人工智能成为发展新热点
12.1.4 人工智能产业的机遇与挑战
12.2 人工智能行业发展趋势预测
12.2.1 人工智能未来发展趋势
12.2.2 “智能+X”将成新时尚
12.2.3 机器视觉成主要发展方向
12.2.4 人工智能将带来新变化
12.2.5 人工智能市场规模预测
图表目录
图表 人工智能产业链
图表 全球运功监测传动器市场
图表 计算成本
图表 全球每年产生的数据总量
图表 人工智能的重点品类
图表 人工智能的重点品类的公司分布
图表 人工智能的重点品类的融资分布
图表 最受风险资本青睐的人工智能品类
图表 全球人工智能“战局”
图表 人工智能各品类成熟度排行
更多图表详见正文( GSLWK)
特别说明:中国报告网所发行报告书中的信息和数据部分会随时间变化补充更新,报告发行年份对报告质量不会有任何影响,并有助于降低企事业单位投资风险。